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in terms of a stepwise mechanism involving a zwitterion (10 
or 11), not by a concerted mechanism.20 Thus the zwitterions 
(10,11) are intercepted by the nucleophiles at low tempera­
tures to give the hydroperoxides (3, 6) or rearrange to the 
dioxetanes (8,9) at ordinary temperature.22 According to the 
MINDO/3 calculations, the zwitterion, an initial intermediate 
in enamine-singlet oxygen reaction, has been predicted to 
undergo rearrangement to a dioxetane with a relatively high 
activation energy compared to that for other processes such 
as rearrangement to a perepoxide.6a If so, it seems very likely 
that the lifetime of the zwitterions (10,11) will be longer at 
lower temperature, permitting the trapping reactions more 
efficiently. The product ratio (6/7) is also solvent dependent. 
Polar solvents appear to increase the ratio of the dioxetane 
mode products (7) to the trapping reaction at least at 20 0C 
(Table I), although the solvent effect is still obscure. It is known 
that polar solvents increase the ratio of dioxetane formation 
to ene reaction.21a'd'23 

In order to get the spectroscopic evidence for the initial in­
termediate, we carried out the photooxygenation of 5a at —70 
0C in an NMR cell. The NMR spectrum (-70 °C) of the re­
action mixture in CD3OD or CDCI3 had only the resonances 
of 6a. Neither zwitterion 11 nor dioxetane 9 could be detected 
at the temperature.24 The spectroscopic studies at —70 0C 
provided no direct evidence in support of the zwitterions; 
however, we believe that the results described here may rep­
resent chemical evidence for the intermediacy of the zwitter-
ionic peroxides. 
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Synthesis of Vane's Prostaglandin X, 6,9a-Oxido-
9a,15a-dihydroxyprosta-(Z)5,(E)13-dienoic Acid 

Sir: 

Vane and co-workers have recently obta ined evidence for 
the formation of a new and remarkab ly active pros taglandin , 
termed P G X , from the prostaglandin endoperoxides PGG2 or 
P G H 2 and microsomal fractions of cer ta in tissues, especially 
aor ta , a r te r ia l wall , and fundus of s tomach . 1 , 2 Vane ' s P G X 
inhibits platelet aggregat ion as do P G E i and PGD2, but is 
several t imes more potent ; it also causes relaxat ion of ar ter ia l 
smooth muscle. Al though no s t ructure was proposed for P G X , 
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the genesis from the PG-endoperoxides (e.g., PGH2, 1), the 
sensitivity to acid in aqueous solutions (rapidly increasing 
below pH 7), and its probable intermediacy in the formation 
of 6-oxo-PGFi„,'"3 all suggest that PGX is an internal enol 
ether of the latter, most likely a 6,9-enol ether 2, which can 
arise as shown. This possibility has now been confirmed by an 
unambiguous synthesis of PGX from PGF2a of natural con­
figuration which also permits the assignment of the Z geometry 
to the 5,6-double bond of PGX as in 2. 

Reaction of the 11,15-bistetrahydropyranyl ether of pros­
taglandin F2a

4 (3) in THF-chloroform (25 mL/g of 3) with 
1.1 equiv of /V-bromosuccinimide at 23 0C for 1 h afforded the 
diastereomeric bromo ethers 4 and 5.5 Although these ethers 
were not readily separable by thin layer chromatography 
(TLC), depyranylation (acetic acid-water-tetrahydrofuran 
3:1:1 at 45 0C for 4 h) afforded the easily separable dihydroxy 
bromo ethers 6 and 7 in a ratio of ca. 3:1 (81% yield overall 
from 3; observed Rvalues on silica gel TLC plates with ben-
zene-dioxane-acetic acid 20:10:1 as solvent, 0.23 for 6 and 
0.28 for 7).5 The NMR and infrared spectra of 6 and 7 clearly 
indicate the absence of the m-5,6-olefinic unit and the re­
tention of the trans-13,14-double bond. 

Treatment of the major bromo ether 6 with excess potassium 
/erf-butoxide in terr-butyl alcohol at 45 0C for 1.5 h to effect 
elimination of hydrogen bromide, concentration, rapid ex­
traction of product with ether from a pH 5 aqueous layer 
cooled to 0 0C, and treatment with diazomethane afforded the 
acid sensitive methyl ester of 2.5'6 In contrast the stereoisomeric 
bromo ether 7 was recovered virtually unchanged after expo­
sure to potassium terf-butoxide under the conditions outlined 
above. These results indicate that the proton attached to C-6 
in the bromo ethers 6 and 7 are exo and endo (i.e., less sterically 
hindered and more hindered), respectively, relative to the bi-
cyclic nucleus, and together with the well-known trans addition 
pathway for bromo ether formation allow designation of the 
stereochemistry of 6 and 7. Further, the trans-coplanar course 

of E2 elimination from 6 (which clearly would be followed 
here) must produce the Z geometry of the 5,6-double bond as 
shown in formula 2. Thus, the prostanoid 2 is readily available 
from 3 by an unambiguous and stereocontrolled synthetic 
route. 

Independent evidence for structure 2 was obtained by the 
extremely facile and clean hydrolysis of the methyl ester of 2 
(in THF-0.01 M hydrochloric acid 3:1 at 23 0C for 10 min) 
to a more polar substance of RfOAl in ether-acetone (3:1), 
which was characterized as 6-keto-PGFia methyl ester by 
conversion to the known5 0-benzyloxime derivative.3d'7 

Samples of 2 were obtained for bioassay as the pyrrolidine 
salt by prompt treatment of the cold ethereal extract (described 
above) with 2-3 equiv of pyrrolidine, rapid concentration <0 
"C under vacuum and storage at -78 °C in the presence of a 
little potassium carbonate. Solutions for biological testing were 
prepared by addition of cold (-78 0C) ethanol to the pyrrol­
idine salt and then adding an aliquot of this standard ethanolic 
solution (kept at -78 0C) to cold (0 0C) aqueous bicarbonate 
solution (pH 8.5-9) or pH 9 Tris buffer. 

Bioassays of synthetic 2 in two different laboratories dem­
onstrated all the biological properties previously described for 
Vane's PGX. 1^8 

The ease of deactivation of PGX (2) by spontaneous hy­
drolysis to 6-keto-PGFia places limits on the kinds of experi­
ments which can be performed with this substance and it is 
obviously desirable to synthesize close structural analogues of 
PGX which lack the labile enol ether function of 2. Toward this 
end we have synthesized both of the 6-epimeric 5,6-dihydro 
derivatives (8) of PGX and both of the 6-epimeric E- A4'5 iso­
mers (9). The two C-6 epimers of 85 were obtained from 3 
(90% overall yield) by the sequence: (a) reaction with 1.2 equiv 
of mercuric trifluoroacetate in THF-CaCC>3 at 23 0C for 1 h, 
(b) treatment of the 5-mercuri-6,9-ether with excess sodium 
borohydride in ethanol at -20 0C for 1 h, and (c) depyrany­
lation (acetic acid-THF-water 3:1:1 at 45 0C for 4 h). 
Chromatographic separation afforded a major and a minor 
product (ratio 3.8:1) having /?/values of 0.21 and 0.23 (silica 
gel plates, benzene-dioxane-acetic acid 20:10:1). By analogy 
with bromo ether formation from 3, the major isomer of 8 is 
expected to have the appendage at C-6 in the endo orienta­
tion. 

The two C-6 epimers of 9 were synthesized from 3 by the 
sequence (a) reaction with 1.2 equiv of benzeneselenenyl 
bromide and 1 equiv of calcium carbonate in THF at -2O0C 
for 10 min and 0 0C for 1 h, (b) depyranylation, as described 
above, and (c) reaction with 10 equiv of hydrogen peroxide in 
THF at O0C for 16 h. The two epimers of 95 (ratio 1:1,69% 
overall from 3) could be separated chromatographically (Rf 
values 0.21 and 0.26 in benzene-dioxane-acetic acid 20:10:1 
solvent system on silica gel plates). 

The results of biological studies with the PGX analogues 8 
and 9 will be reported later.9,10 
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Mixed Charge Exchange-Chemical Ionization Mass 
Spectrometry of Polycyclic Aromatic Hydrocarbons 

Sir: 

The exact structural identification of polycyclic aromatic 
hydrocarbons (PAH) and their alkylated derivatives is a dif­
ficult problem, particularly when they are encountered as 
complex mixtures. The analytical power of mass spectrometry, 
which has had wide application in this field,1-4 has been limited 
because electron impact mass spectra of isomeric PAH are 
almost identical. The purpose of this note is to report that 
charge exchange-chemical ionization mass spectrometry, using 
an argon-methane reagent gas,5 easily differentiates PAH 
isomers. 

The mass spectra of a series of PAH were measured with a 
Hewlett-Packard 5982A gas chromatographic-mass spec­
trometer system by injecting approximately 200 ng of each 
compound (dissolved in_methylene chloride) on a 180 X 0.32 
cm o.d. stainless steel column packed with 3% Dexsil 300 on 
80/100 mesh Chromosorb W. The reagent gas mixture (10% 
methane in argon) served as the carrier gas for the gas chro­
matographic column which was held isothermally at a tem­
perature appropriate to each sample being analyzed. The mass 
spectrometer was continuously scanned from 50 to 350 amu 
at 81.2 amu/s. The ion source pressure was 0.8 Torr and its 
temperature was 170 0 C. Data were collected and processed 
by a HP 593 3 A data system. Precautions were taken to assure 
the absence of water vapor in the ion source, since water is an 
excellent proton donor and can greatly increase the abundance 
of the protonated molecular ion. In these experiments, there 
were no observable traces of water vapor {m/e 18 or 19). 

The resulting mass spectra showed considerable differences 
in the relative abundances of the molecular (M + ) and pro­
tonated molecular (M + I+) ions when different PAH isomers 
were analyzed. Table I lists the compounds analyzed in this 
study, the resulting ratio of the abundance of the protonated 
molecular to molecular ion ((M + 1)/M), and the first ion­
ization potential of each compound. It is obvious from this table 
that the (M + 1)/M ratio has a high positive correlation with 
ionization potential (r = 0.877, P « 0.01). This trend is con­
sistent with the expectation that as the ionization potential 
increases, charge transfer processes will be less effective for 
electron extraction while at the same time protonation becomes 
more favorable. 

This technique should be quite useful for the elucidation of 

Table I. Abundance Ratios for Selected PAH Obtained by CH4-
Ar Chemical Ionization Mass Spectrometry 

Compound 

Pentacene 
Tetracene 
Anthanthrene 
Perylene 
Benzo[a]pyrene 
Anthracene 
Benz[a]anthracene 
Dibenz[a,A]anthra-

cene 
Pyrene 
Coronene 
Benzo[e]pyrene 
Acenaphthene 
Chrysene 
Fluoranthene 
Fluorene 
Acenaphthylene 
Phenanthrene 
Triphenylene 
Naphthalene 
Benzene 

Formula 

C22H14 

C18H12 
C22H12 

C20H12 
C20H12 
C14H10 
C18H12 
C22HH 

C^H1O 
C24H)2 
C20H12 
C12H10 
C18H12 
CuHlO 
C13H10 

C12H8 

C14H10 
C18H12 
C10H8 
C6H6 

First ionization 
potential (eV)" 

6.42 
6.88 
7.02 
7.03 
7.17 
7.42 
7.47 
7.55 

7.56 
7.58 
7.58 
7.70 
7.74 
7.76 
7.86 
8.02 
8.02 
8.11 
8.14 
9.29 

Abundance 
ratio, 

(M+ 1)/M* 

0.32 
0.45 
0.38 
0.32 
0.73 
0.82 
0.83 
0.95 

0.73 
0.66 
0.82 
1.00 
1.26 
1.57 
1.66 
1.34 
1.59 
1.73 
1.68 
5.79 

" Values were averaged from experimental data found in ref 6-8; 
their variability was usually less than ±0.1 eV. * The reproducibility 
of these measurements was ±4% over a 3-month period. The ratios 
have been corrected for the natural abundance of 13C. 

Figure 1. Plot of the abundance ratio ((M + 1)/M) obtained by CH4-Ar 
chemical ionization mass spectrometry as a function of ionization potential 
(IP) for a series of four tetracyclic polycyclic aromatic hydrocarbons: 1, 
tetracene; 2, benz[a]anthracene; 3, chrysene; 4, triphenylene. 

specific isomeric structures of PAH. By using a mixed charge 
exchange-chemical ionization reagent gas, such as described 
here, different mass spectra can be obtained for most PAH 
isomers while conventional mass spectral techniques provide 
little differentiation. This fact is demonstrated by the series 
of tetracyclic compounds shown in Figure 1. The (M + 1)/M 
ratio of each compound is plotted as a function of its first 
ionization potential. It is interesting to note that this abundance 
ratio increases from 0.45 to 1.73 as the isomer becomes more 
nonlinear, making differentiation quite easy. If a standard 
PAH compound were not available, it seems probable that the 
mass spectrum of that compound could be predicted from its 
ionization potential. The ability to calculate ionization po­
tentials from molecular orbital theory7'8 offers considerable 
promise for the future identification of presently unknown 
PAH. 
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